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FOREWORD 
 

 The organization and formatting of this thesis strictly follows the instructions to the 

author for article submission to Lipids, a journal of the American Oil Chemists’ Society.  
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ABSTRACT 
 

EFFECT OF ETHANOL ON TRIACYLGLYCEROL SYNTHESIS IN CHLORELLA 
SPECIES UTILIZING A NOVEL FLUORESCENCE-BASED ASSAY 

(August 2010) 
 

Matthew Conway Sanderson, B.S., Appalachian State University 
 

M.S., Appalachian State University 
 

Chairperson: Mark Venable 
 
 In this study, I set out to develop a novel method of assaying acyl-CoA: 

diacylglycerol acyltransferase (DGAT) activity employing a fluorescently labeled substrate, 

and then using that protocol to determine the effects of ethanol-induced stress on DGAT 

activity in Chlorella species.  Microsomes from Chlorella sp. were used to construct protein 

and time curves to characterize the method in microalgae.  Microsomes from Rattus liver 

were used to construct a substrate concentration curve and a Lineweaver-Burk plot to 

characterize the method in mammalian tissue.  Optimal reaction conditions were determined 

to be 10 µg microsomal protein with 20 min incubation.  The mammalian microsomes 

provided a Km of 6.26 µM substrate concentration and a Vmax of 0.211 pmol product x min-1 

x µg protein-1.  This method represents the first fluorescence based DGAT assay.  Chlorella 

sp. cultures were exposed to 0.33%, 0.66%, and 1.00% ethanol concentrations for 3 hr, and 

the DGAT activity assayed under optimal conditions.  Increases in DGAT activity were 

observed in all cultures exposed to ethanol with a maximum seen at 0.66% concentration.  

These results have implications towards improving biodiesel production in mass algal 

cultures. 
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INTRODUCTION 
 
 

Reliable methods for the mass production of renewable fuel are at the forefront of 

numerous research efforts.  Currently the energy sources of choice are petroleum based, 

which are non-renewable and exacerbate several environmental concerns.  Biodiesel is seen 

as a possible substitute for petroleum products.  It is biodegradable, has relatively lower 

emissions than petroleum based fuel, and is completely renewable, as vegetable oils and 

animal fats serve as the raw materials.  There are several methods for the production of 

biodiesel: (1) blending raw vegetable oil with diesel fuel, (2) the use of microemulsions, (3) 

pyrolysis, and (4) transesterification [1-3]. 

 Transesterification, also known as alcoholysis, represents the most logical mean of 

producing biodiesel.  It describes the reaction between an alcohol and oil or fat that yields 

fatty methyl esters (fuel component) and glycerol.  The method usually employs a base 

catalyst and displays high levels of conversion to biofuel.  This is the method of choice for 

industrial level biodiesel production because it is simple, relatively inexpensive, and the 

resultant biodiesel is very similar to petroleum-based diesel in respect to its chemical and 

physical properties.  Biodiesel produced in this manner also has improved environmental 

characteristics, as its combustion has reduced amounts of particulates, CO, and SOx when 

compared to petroleum based diesel [3,4]. 

 There have been numerous research efforts to find the best candidates for the 

production of the oils and fats required for biodiesel.  Seed oils from terrestrial plants have 
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dominated this field of research, because their oils are almost entirely in the form of 

triacylglycerol (TAG), which is the oil of choice for transesterification/biodiesel production.  

However, the oil yield from these crops is not sufficiently high enough with respect to the 

amount of land required, so alternatives need to be explored [5].  

 The use of microalgae for oil production could provide a solution.  Microalgae are 

very simple to raise and maintain, they grow rapidly (biomass can double in 24 hrs), and they 

require only a small fraction of the land needed to produce an equivalent amount of oil from 

terrestrial plants (based upon bench-scale yields).  For example, to replace 50% of the 

transport fuels used in the United States with biodiesel from oil palm, which has the highest 

oil yield per unit of land for a terrestrial plant, it would require 24% of the existing farmland. 

Only 1-3% of existing farmland would be required (based upon 80% dry biomass in oil), to 

produce an equivalent amount using microalgae.  Because of the large reduction in the land 

requirement, the use of microalgae for oil production would have a minimal effect on other 

products obtained from crops [5-8].   

Chemically, oils are lipids.  A lipid is classically defined as any chemical compound 

produced by a living organism that is not soluble in water, but readily soluble in an organic 

solvent.  Lipids include a large variety of compounds.  The focus of this paper is with the 

glycerolipid class, which all contain a glycerol backbone.  The glycerolipid category 

encompasses the majority of lipids found in plants, the majority of which are membrane and 

storage lipids.  In general, membrane glycerophospholipids are composed of the glycerol 

backbone, two fatty acids (FA)s esterified to the sn-1 and sn-2 positions of the glycerol 

backbone, and a polar headgroup, such as phosphocholine, bound to the sn-3 position.  
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Storage lipids (TAGs) have the same general structure as glycerophospholipids, except a 

third FA occupies the glycerol sn-3 position [9-15].   

A major site of glycerolipid synthesis in plants, and the only site involved in TAG 

formation, occurs in the endoplasmic reticulum (ER) via the Kennedy pathway [10,11].  FAs 

are synthesized de novo in the plastid and activated as acyl-CoAs on the outside of the 

organelle.  They are shuttled into the ER along with glycerol 3-phosphate (G3P) produced in 

the cytosol [11].  In the ER, G3P is acylated twice to form phosphatidic acid (PA).  PA is 

then dephosphorylated via the activity of phosphatidic acid phosphatase to form 

diacylglycerol (DAG).  DAG plays a key role in lipid metabolism, because it serves as the 

immediate precursor for phosphatidylcholine (PC), a prominent membrane lipid, and TAG, 

the primary storage lipid.  Thus, DAG represents a central branch point between cellular 

growth and storage [16-18].  Scheme 1 displays the aforementioned fates of DAG and the 

enzymes involved. 

The ultimate fate of DAG is determined by the activities of the governing enzymes.  

The terminal step in PC production from DAG is accomplished through the action of DAG 

phosphocholine transferase (PCT) [19].  Conversely, a family of diacylglycerol 

acyltransferases (DGAT)s can achieve the final step in TAG biosynthesis.  There is type-1 

acyl-CoA:diacylglycerol acyltransferase (DGAT)-1, type-2 DGAT (DGAT-2), and 

phospholipid:diacylglycerol acyltransferase (PDAT).  As evidenced through the names, 

DGAT-1 and DGAT-2 are dependent upon the presence of acyl-CoA for the addition of the 

third FA, while PDAT is independent of acyl-CoA, as it transfers a FA from a phospholipid 

to DAG [20,21].  A type-3 acyl-CoA:diacylglycerol acyltransferase (DGAT-3) has been 

discovered in peanuts, but homologs have not been found in other species [22].  Interestingly, 
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while DGAT-1 and DGAT-2 both catalyze the same reaction, they share no sequence 

homology [20].  In plants, it appears that DGAT-1 is responsible for the majority of oil 

accumulation, while DGAT-2 and PDAT have been implicated in the production of TAGs 

with unusual fatty acids, such as eleostearic acid in tung oil [20].  In animals, it has been 

suggested that DGAT-1 is responsible for the esterification of exogenous fatty acids to DAG, 

while DGAT-2 is responsible for the incorporation of endogenous fatty acids to DAG [15]. 

The activities of the DGAT enzymes appear to be influenced by several factors.  In 

mammals, both tissue location and nutritional status play central roles.  The former is 

evidenced through the fact that DGAT activity is maximal in those organs associated with 

increased levels of TAG synthesis, such as the liver and adipose tissue [14].  The latter is 

exhibited through hormonal control of DGAT, as administration of insulin and glucagon, 

which are directly related to glucose status, resulted in increased and decreased DGAT 

activity, respectively [23-25].  In oilseed plants, DGAT activity is heavily reliant upon the 

developmental stage of the organism.  It has been reported that flaxseed enter a stage of oil 

accumulation commencing about 8 days after flowering and ending about day 16.  DGAT 

activity is at maximum during this period [26,27].  Similar findings were observed in 

Brassica napus (species of rapeseed) [28,29].  Otsuka and Morimura (1966) reported that 

Chlorella ellipsoidea accumulate oils during their growth phase in light and that those oils 

are utilized during cell division [30].  Furthermore, it has been suggested that accumulated 

oils in Chlorella are specifically consumed during the cell division stage of autospore release 

[31]. 

Oil production differs according to the type of organism and its physiological 

requirements, and the environmental conditions under which it finds itself at any given time.  
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While there are some major differences in the regulation of oil accumulation across species, 

there is one general commonality, which is the influence of stress on TAG production.  When 

subjected to ideal conditions, the majority of lipids produced by eukaryotes tend to be 

structural or membrane lipids, such as PC [15,17].  However, when experiencing stress, 

eukaryotes display a proclivity for storage lipid accumulation, as reduced carbon is shunted 

towards the TAG pathway, while structural lipid synthesis is attenuated [31-41]. In the case 

of microalgae, they will then enter a semi-dormant state, in which cell division and cellular 

growth are no longer primary functions, and survival through the stress-inducing event 

becomes paramount [17,31,42]. 

Stress-induced oil (storage lipid) accumulation at the expense of membrane lipids in 

green microalgae is well documented. Notable examples involve the response of green 

microalgae to nutrient availability.  Suen et al. [33] and Tornabene et al. [34] have 

demonstrated that nitrogen (N)-deprivation in Nannochloropsis sp. and Neochloris 

oleoabundans, respectively, elicited increased TAG accumulation.  Furthermore, Suen et al. 

[33] suggested that the increase seen in storage carbon was at the expense of phospholipids 

(PL).  This was evidenced not only through an increase in the TAG/PL ratio, but also through 

a decrease in cell density observed during N-deprivation (restricted growth) [33].  Another 

example involves the response of Chlorella vulgaris to ethanol-induced stress.  Goedhart et 

al. [36] have demonstrated large increases in the TAG content of C. vulgaris when exposed 

to ethanol.  They reported a 30-fold increase in TAG concentration upon exposure to 0.33% 

ethanol with decreases in PA and PC content.  These results were not presented with respect 

to enzymatic activity, but rather to overall changes in the lipid composition [36].  
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In light of the information presented, one could infer that stress affects microalgae 

through inhibition of the cell cycle and accumulation of TAG at the expense of PL.  

However, it is not known what impact stress has on the specific activity of DGAT, which 

could provide integral information towards elucidation of this stress-mediated pathway. 

Schema 2 demonstrates the hypothesized effect of ethanol stress on the TAG production 

pathway.  This could also provide an important step towards making algae-based biodiesel 

production a reality, as current methods of production do not provide sufficient amounts of 

TAG per microalgal cell to make the project cost efficient. The purpose of the research 

presented here was to investigate the effects of ethanol stress on acyl-CoA dependent DGAT 

activity in Chlorella sp. utilizing a novel fluorescence-based DGAT assay.  We report 

significant increases in the specific activity of acyl-CoA dependent DGAT as a result of 

ethanol exposure.  These results are discussed in the context of stress-mediated cell signaling 

and the overall goal of increasing TAG synthesis in microalgal mass cultures towards the 

production of biodiesel that can financially compete with petroleum derived fuel.  
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EXPERIMENTAL PROCEDURES 
 
 
Algal Cultures, Hepatic Tissue, and Reagents 

 

All algal cultures were purchased from Carolina Biological Supply (Burlington, NC), 

and the hepatic tissue was from the genus Rattus.  Dithiothreitol (DTT) was purchased from 

Bio-Rad (Hercules, CA), and 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-

phosphatidylcholine was purchased from Avanti Polar Lipids (Alabaster, AL) and 

enzymatically converted to NBD-DAG through phospholipase C (Sigma-Aldrich, St. Louis, 

MO).  The NBD-TAG standard was graciously provided by Dr. Richard Pagano.  Sucrose 

and Tris base were purchased from Fisher Scientific (Hampton, NH), and thin layer 

chromatography (TLC) silica gel G plates were purchased from Analtech (Newark, DE).  All 

other reagents were obtained from Sigma-Aldrich (St. Louis, MO). 

 

NBD-DAG Preparation 

 

The synthesis of NBD-DAG from NBD-PC was performed, with modification, 

according to the procedure by Kates [43]. In a 13 x 100 mm glass reaction tube equipped 

with Teflon cap and stir bar, NBD-PC was suspended in diethyl ether:ethanol (98:2, v:v) and 

0.02M CaCl2. The reaction was then initiated through the addition of phospholipase C from 

Bacillus cereus (Sigma-Aldrich, St. Louis, MO). The reaction was allowed to proceed for 2 
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hrs at room temperature (approximately 23 oC) with stirring. The solution was brought to 

dryness with a stream of N2 and resuspended in 3 ml of methanol. Lipids were extracted 

according to the method of Bligh and Dyer [44] and brought to dryness in a stream of N2. 

Lipids were resuspended in 2 ml chloroform:methanol (1:1, v:v), spotted in their entirety on a 

silica gel G TLC plate then developed in acetic acid:methanol:diethyl ether:hexane 

(1:5:30:70, v:v). The plate was analyzed for NBD-DAG product with a UV light. NBD-DAG 

product was scraped off of the TLC plate into a new 13 x 100 mm glass reaction tube and 

extracted according to the method of Bligh and Dyer [44]. NBD-DAG solution was brought 

to dryness in a stream of N2 and resuspended in chloroform. 

 

Preparation and Separation of Microsomal Fraction 

 

Microsomes from Chlorella species, Chlamydomonas reinhardtii, Cyclotella 

cryptica, and Rattus norvegicus hepatic tissue were prepared, with modification, by the 

procedure of Sewada and Shiraiwa [45].  Approximately 0.8 g (wet cell weight) were isolated 

through centrifugation at 2500g for 10 min at 4 oC. Samples were kept on ice or at 4 oC for 

the remainder of the microsomal preparation.  Cell pellets were suspended in 1 ml of 

grinding buffer (125 mM sucrose, 1 mM EDTA, 1 mM DTT, 1 mM PMSF, and 50 mM Tris-

MES, pH 7.48), transferred to a 1 ml Potter-Elvehjem homogenizer (Reacti-Ware, Pierce, 

IL), and homogenized with a Barnant Mixer, Series 10 (speed of 7 for three 30 sec periods; 

Barrington, IL).  Algal homogenates were centrifuged at 1230g for 10 min at 4 oC and the 

supernatant decanted.  The pellets were resuspended in 1 ml of grinding buffer and 

homogenization repeated.  The rat liver sample did not require a second homogenization.  All 

samples were then centrifuged at 270g for 13 min at 4 oC and the supernatants isolated.  The 

supernatants were placed in a Beckman TLA 100.4 (Fullerton, CA) rotor and centrifuged at 
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89,000g for 30 min at 4 oC (Beckman Optima TL Ultracentrifuge, Fullerton, CA).  

Microsomal pellets were resuspended in 500 µl of grinding buffer through brief sonication 

(1-3 s) with a W-380 Sonicator (Heat Systems-Ultrasonics, Inc, Plainview, NY; Settings: 

continuous cycle, 40% duty cycle, and 4 output control) and microsomal protein quantified 

through the Bradford method using γ-globulin as the standard [46].  The microsomal samples 

were used fresh or stored at -80 oC.  The enzymatic activity for algal microsomes appeared to 

be somewhat degraded by freezing and thawing.  The enzymatic activity for rat liver 

microsomes was not affected by the freezing and thawing process.   

 

DGAT Assays 

 

Enzyme assays were conducted, with modification, by the procedure from Little et al. 

[47].  The assays were performed in 8 ml polypropylene snap cap tubes with shaking at 35 oC 

in a C25KC Incubator Shaker (New Brunswick Scientific, Edison, NJ).  Each reaction tube 

received 50 µl of standard reaction mixture (0.2 M HEPES/NaOH buffer, pH 7.41, with 3 

mM MgCl2, 1 mM ATP, 330 mM oleoyl-CoA, 118 mM NBD-DAG, 0.02% Tween-20, and 

0.5% (w/v) BSA, 10 µg microsomal protein (unless otherwise indicated), and was brought to 

a final volume of 100 µl with deionized water.  The reaction was initiated by addition of the 

microsomes, allowed to proceed for 20 min (unless otherwise indicated), then terminated 

through the addition of 1 ml of methanol.  Lipids were extracted according to the method of 

Bligh and Dyer [44].  The CHCl3 phase was brought to dryness in a stream of N2 and placed 

in solution by 50 µl of CHCl3.  The samples were spotted in their entirety onto channeled 

TLC plates, from Analtech (Newark, DE), coated with 250 mm Silica Gel G and a 
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preadsorbent zone.  The plates were developed in acetic acid:methanol:hexane:diethyl ether 

(1:5:40:60, v:v) then allowed evaporate.  The plates were then analyzed for NBD-TAG using 

a Typhoon Trio Variable Mode Imager (Amersham Biosciences, Piscataway, NJ).  Assays 

were conducted in duplicate or triplicate as indicated.    

 

Determination of Picomoles of NBD-TAG 

 

A standard curve was constructed using known amounts of standard NBD-DAG, 

which was utilized to determine the concentration of an NBD-TAG standard solution.  A 

standard curve using the NBD-TAG standard was then constructed.  The “volumes” of 

fluorescence, represent the level of fluorescence, obtained from experimentally synthesized 

NBD-TAG were compared to the NBD-TAG standard curve, in order to determine moles of 

product produced.  It should be noted that the “volumes” refer to the area under the curve 

determined by the fluorescence imager. 

 

Exposure of Chlorella species Cultures to Ethanol 

 

Chlorella sp., in log phase growth, at a volume of 1000 ml was centrifuged at 2500g 

for 10 min at room temperature.  The supernatant was decanted, and the algal pellet was 

resuspended in spring water to an approximate optical density of 1.00 at 680 nm using a 

Beckman DU640B Spectrophotometer (Fullerton, CA).  In 250 ml glass media bottles 

(dimensions: 11 cm height and 5 cm diameter), 0% ethanol, 0.33% ethanol, 0.66% ethanol, 

and 1.00% ethanol solutions were made consisting of Chlorella sp. and ethanol to a final 
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volume of 200 ml.  The glass media bottles were capped with a lid that contained a hole in 

the center for insertion of a stone bubbler.  The bubbler had an approximate airflow of 20 

ml/min with approximately 10% CO2 in air.  The cultures were placed under constant 

fluorescent illumination (approximately 78 µmol photons m-2 s-1; average illumination per 

algal cell was approximately 34.6 µmol photons m-2 s-1) for 3 h.  Illumination was 

determined with a LI-190 quantum sensor connected to a LI-250 light meter (Li-Cor, Inc., 

Lincoln, NE).  Microsomes were prepared and DGAT activity assayed as described above. 
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RESULTS 
 
 
DGAT Assay Characteristics 

 

I used the existing radiolabel based assay parameters as a starting point of 

development.  The buffer conditions were optimized for that assay.  In order to perform a 

fluorescence assay I first needed the fluorescent substrate.  I decided that it would be most 

appropriate to use labeled DAG instead of the acyl-CoA due to greater stability and fewer 

side reactions.  DAG with an omega-labeled fatty acid is not commercially available.  The 

simplest route to this substrate is to purchase ω-NBD-fatty acyl-phosphatidylcholine, treat 

with phospholipase C then purify the diacylglycerol product via TLC.  The published 

protocols work well and generated product in quantitative amounts. 

A concern I had was that the stearic hindrance of the NBD label would interfere with 

the enzyme.  However, I had confidence that it would work since whole cell experiments 

show incorporation of NBD-labeled fatty acids into lipid droplets such as in Schistoma 

mansoni [48]. 

Once I had this substrate I proceeded to determine whether the assay would be 

sensitive enough to measure endogenous enzyme activity in algae.  In preliminary 

experiments (not shown) I optimized the amount of substrate such that enough product would 

be formed to measure and that the substrate mass was such that only a small percentage of 

the substrate was used so that the enzyme did not become substrate limited.  
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I wanted to characterize the assay for linearity with respect to protein concentration 

and time using the common Chlorella sp. algae.  An NBD-TAG standard curve was 

constructed for determination of product formation (Fig. 1).  I found that the DGAT activity 

was linearly proportional to microsomal protein concentration up to 10 µg (Fig. 2).  The 

activity continued to climb up to about 25 µg and then declined slightly.  In these 

experiments I did not cut the NBD-DAG with unlabeled DAG substrate so the sensitivity 

could not be increased much by increasing the ratio of fluorescence to mass.  The use of a 

more sensitive imager or increasing the scan time may allow accurate measurements at 

protein concentrations below 1 µg. 

A time course was then performed using the 10 µg optimal protein concentration.  I 

found that the activity increases linearly up to 20 min after which activity continues to climb 

through approximately 30 min and begins to level off at approximately 40 min (Fig. 3).  The 

progress was not limited by the amount of substrate or by conversion to polar lipid products. 

Next I wanted to determine whether the assay was generally applicable relative to 

species.  I conducted the assay using microsomes from another green alga (Chlamydomonas 

sp.), the saltwater diatom (Cyclotella cryptica) and mammalian liver (Rattus).  The assay 

worked well in all three algal taxa and in measuring liver enzyme activity (Fig. 4).  The 

activity is presented in terms of specific activity (pmole product x min-1 x µg protein-1) with 

the assays being performed at the standard 10 µg protein and 20 min time.   

Additional study was performed with the Rattus liver microsomes to further 

characterize the kinetics of the assay in mammalian tissue.  A substrate concentration curve 

was constructed using increasing concentrations of NBD-DAG (Fig. 5).  Standard conditions 

were used (10 µg protein and 20 min incubation time).  The curve is linear with respect to the 
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rate of product formation through approximately 50 µM NBD-DAG.  The curve then begins 

to approach a horizontal asymptote at a product rate of approximately 0.2 pmoles x min-1 x 

µg protein-1.  A Lineweaver-Burk (double reciprocal) plot was constructed from the substrate 

concentration curve (Fig. 6), and the Km and Vmax were determined to be 6.26 µM NBD-

DAG and 0.211 pmoles NBD-TAG x min-1 x µg protein-1, respectively.   

With respect to the Rattus liver microsomes, it should be noted that some of the 

volumes (amount of fluorescence) of NBD-TAG obtained were outside of the NBD-TAG 

standard curve.  However, the extrapolation of data points was not of concern, because 

volume (fluorescence) plotted as a function of substance amount (pmoles NBD-TAG) will 

always be linear as long as the volumes obtained are less than the saturation limit of the 

detector.  All data obtained were below the saturation limit of the detector 

 

Effects of Ethanol on Acyl-CoA Dependent DGAT Activity in Chlorella species 

 

In preliminary experiments, a variety of stressors that increase oil accumulation in 

algae were found.  One of those was ethanol and since its delivery is straightforward I 

decided to assay for changes in acyl-CoA:DGAT in response to ethanol.  I exposed cultures 

to 0.33%, 0.66%, and 1.00% ethanol concentrations.  It was important that the optical density 

of the culture, directly related to culture density, be at an approximate absorbance of 1.00 ± 

0.05 at 680 nm before ethanol is administered.  Optical densities significantly less than 1.00 

have demonstrated tendencies towards ethanol toxicity and cell death, while densities 

significantly greater than 1.00 have shown little to no effect from ethanol exposure (data not 

shown).   
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I wanted to allow ample time for all ethanol-induced cellular responses to take place 

(post-translational modification and changes in gene expression).  Sanchez-Amate et al. [49] 

described persistent effects on enzyme activities in chick-liver membranes after 15 min 

exposure to ethanol.  Experimentation with nutrient depletion in Chlamydomonas reinhardtii 

demonstrated stress-related gene expression within 15 min to approximately 2 h [50-52].  

Thus, a 3 h ethanol exposure period was utilized to allow for a full response.   

The activity of PDAT was of concern, because it could produce fluorescently labeled 

TAG independent of acyl-CoA [21].  However, this was accounted for through assays 

performed in the absence of exogenous acyl-CoA (data not shown).  Those assays showed no 

TAG production, or at least the TAG produced was below the limit of detection.  Thus, it was 

determined that PDAT of Chlorella sp. did not significantly contribute to TAG production 

under ethanol stress.  Similar results were reported in Arabidopsis thaliana seeds [53]. 

 To assay acyl-CoA-dependent DGAT activity in Chlorella sp. in response to varying 

ethanol concentrations, the previously determined optimal conditions of 10 µg protein and 20 

min reaction time were used.  Trials were performed in duplicate, and the results are 

presented in terms of the specific activity (Fig. 7).  Increases in the specific activity, relative 

to the control, were observed in all cultures exposed to ethanol with a maximum exhibited at 

an ethanol concentration of 0.66% (approximate 3-fold increase). 
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DISCUSSION 
 
 

The study of TAG biosynthesis and its regulation is of utmost importance.  The 

overproduction and storage of TAG in humans has implications towards cardiovascular 

disease and diabetes, while synthesis of TAG in plants has relevance towards biodiesel 

production.  Due to the importance of ongoing research in TAG metabolism, better methods 

of assaying the controlling enzymes are necessitated.  The DGAT assays currently in use 

employ radioactively labeled substrates or some sort of heterologous expression of DGAT 

through transfection [26,47,54-57].  Recently, Siloto et al. [57] have published a novel 

method that determines TAG content, which can be used to indirectly measure TAG 

synthesizing enzymes, through the use of Nile red fluorescence in yeast, so that radioactive 

isotopes could be avoided.  They also demonstrated that the assay was useful for the study of 

various DGAT mutants [57].  However, all results were obtained from a single species of 

yeast, inferring that in order for their technique to be ubiquitous, the DGAT of interest must 

first be raised through transfection.  This raises the probability of aberrant results without 

extensive controls. 

The fluorescence-based assay developed for this study represents a novel method of 

measuring acyl-CoA:DGAT activity.  It represents the first DGAT assay to utilize a 

fluorescently labeled substrate (NBD-DAG) alternative to radiolabeled substrate.  The assay 

can be directly used on plant and animal tissue preparations, thus demonstrating the broad 

applicability of the technique.   
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The assay is sensitive enough to measure endogenous DGAT and so does not require 

transfection.  It appears to give comparable results to the radiolabeled assays in plants.  Byers 

et al. [56] reported an acyl-CoA:DGAT specific activity of approximately 33 pmol TAG x 

min-1 x mg protein-1 in canola at the same MgCl2 and ATP concentrations as our assay.  

Sorensen et al. [26] reported an acyl-CoA:DGAT specific activity of approximately 1.5 pmol 

TAG x min-1 x mg protein-1 in developing flaxseed using oleoyl-CoA.  These values compare 

well with our range of specific activities of 8.3 – 15.2 pmol TAG x min-1 x mg protein-1 

reported for the ethanol portion of the study (Fig. 7). 

Using the fluorescent assay I found somewhat lower specific activity than was 

reported using the radiolabeled assays in mammalian tissue.  Ganji et al. [58] reported an 

approximate Km, Vmax, and combined DGAT-1 and DGAT-2 specific activities of 100 µM 

DAG, 2 pmol TAG x min-1 x µg protein-1, and 1.2 pmol TAG x min-1 x µg protein-1, 

respectively, in HepG2 cells.  Young and Lynen [59] and Andersson et al. [60] reported 

approximate DGAT activities of 3.3 pmol TAG x min-1 x µg protein-1 and 5.9 pmol TAG x 

min-1 x µg protein-1, respectively, in Rattus liver microsomes using palmitoyl-CoA.  When 

compared to my results from the Rattus liver microsomes (Km = 6.26 µM NBD-DAG, Vmax = 

0.211 pmol TAG x min-1 x µg protein-1, and specific activity = 0.2 pmol TAG x min-1 x µg 

protein-1), it appears that the fluorescence-based assay is consistently lower by an 

approximate factor of 10.  I was not able to compare the two methods side by side so the 

difference could be accounted for by several factors, including rat physiological status or age, 

particulars in how substrate or enzyme were prepared or differences in how the fluorescent 

and radioactive substrate fit into the enzyme active site. 
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Ethanol increases acyl-CoA:DGAT activity in Chlorella sp.  The 0.66% ethanol 

treatment provided the highest activity, with an approximate 3-fold increase, relative to the 

control.  Goedhart et al. [36] demonstrated that treatment of algae with 0.33% ethanol lead to 

an approximate 30-fold increase in cellular TAG concentration; however, their results are 

based upon overall TAG content and not enzymes activities.  Their results are also based 

upon much longer exposures to ethanol (approximately 60 hr) [36].  It is tempting to 

speculate that this 3-fold increase in DGAT activity could lead to a 30-fold increase in algal 

oil content after 60 hr of treatment. 

At the cellular level, it appears that ethanol induces stress by affecting membrane 

fluidity.  It is believed to disturb the organization of the acyl chains on membrane 

phospholipids, thus increasing the fluidity of the membrane [61].  This is believed to occur 

because of the hydrogen bond breaking activity of ethanol at the membrane-water interface 

[62].  This effect on membrane fluidity can in turn affect the activities of enzymes throughout 

the cell [63].  Sanchez-Amate et al. [49] demonstrated marked inhibition of microsomal 

NADH cytochrome b5, an enzyme involved in the FA desaturase complex of the ER.  

Inhibition of this complex suggests decreases in membrane desaturation resulting in 

decreased cellular fluidity.  Increased rigidity would aid in ameliorating the increased fluidity 

brought upon by ethanol.   

In order to bring about such responses, enzymatic activities must be altered.  This can 

be accomplished through post-translational modification and/or modulation in expression 

levels of the enzyme.  There are several publications demonstrating both cases in microalgae 

[50-52,64-69].  It appears that acyl-CoA:DGAT is not constitutively expressed in oilseeds.  

However, during TAG accumulation, DGAT-1 transcripts are observed in abundance.  The 
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expression is then reduced as the lipid content reaches a maximum [26,28,29,70].  This 

suggests that algae may not constitutively express acyl-CoA:DGAT either, but rather cater 

the expression to the needs of the cell.   

In order for external stimuli, such as ethanol administration, to upregulate acyl- 

CoA:DGAT expression, signal transduction must be occurring.  A well-known signal 

transduction pathway in animals involves phosphatidylinositol 4,5-bisphosphate (PIP2).  A 

primary function of this pathway is to relay information across the plasma membrane through 

the hydrolysis of PIP2, which produces inositol triphosphate (IP3) and DAG, two well-

documented signaling molecules.  This is accomplished via the activity of a PIP2-specific 

phospholipase C (PLC) [71-74].  This pathway has been observed in microalgae and found to 

be active in response to hypoosmotic shock (a stressor).  Furthermore, PIP2 levels 

comparable to those found in animal cells have been demonstrated in microalgae [71,74].  

Subsequently, IP3 and DAG stimulate the release of intracellular calcium and activate 

protein kinase C (PKC), respectively [72].  Interestingly, a putative protein kinase-targeting 

motif is conserved in acyl-CoA:DGAT and other acyltransferases, so some regulation could 

be exhibited at the protein level [54,75].  In addition, Augert et al. [72] suggested that 

intracellular calcium release and activated PKC stimulate a PC-specific PLC, which 

hydrolyzes PC to DAG and cytidine 5’-phosphocholine.  This could have a profound effect 

on intracellular DAG content, as PC is an abundant membrane lipid [17].  Therefore, this 

signaling pathway could play an integral role in the conversion of membrane lipids to storage 

lipids in algae. 

 The exact mechanism through which ethanol elicits increased acyl-CoA:DGAT 

activity is unknown.  However, based upon evidence presented in this paper, a partial 
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mechanism can be proposed: (1) ethanol exposure results in increased membrane fluidity, (2) 

this activates a PIP2-specific PLC, (3) PIP2 is hydrolyzed into signaling molecules IP3 and 

DAG, (4) IP3 stimulates the release of intracellular calcium stores, which with DAG 

activates PKC, (5) a PC-specific PLC is activated, which produces DAG, (6) increased DAG 

pool allows for greater chance of interaction with acyl-CoA:DGAT to produce TAG, and (7) 

activated PKC phosphorylates putative protein kinase-targeting motif of acyl-CoA:DGAT.  

Obviously, there are holes in the proposed mechanism, such as the state of the acyl-CoA pool 

and whether acyl-CoA:DGAT expression is up-regulated through this pathway or if the 

activity of pre-existing acyl-CoA:DGAT is stimulated by activated PKC.  It could be both.  

Furthermore, the effect of ethanol on PCT activity is also unknown, so additional 

experimentation is required to fully elucidate the mechanism. 

Three technical problems currently under assault are how to grow such large amounts 

of a waterborne crop, how to economically harvest a microscopic crop from water, and how 

to dewater the algae once harvested.  Biologically, the primary limitations revolve around 

inadequate molecular knowledge.  In order for microalgal biofuel to become competitive, the 

microalgae must produce large amounts of biomass (near theoretical limits), which will 

require a much-expanded foundation of knowledge with respect to the factors regulating 

factors of carbon flux in microalgae [76]. 

Several other biological limitations in microalgae have also been observed.  These 

include, but are not limited to, organism survival, seasonality, and light penetration.  With 

respect to organism survival, open-system mass culture methods, most notably raceway 

ponds, are very susceptible to contamination by exogenous algal species, which can take over 

the culture.  It is suggested that herbicide resistance conferred through transgenics may solve 
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this problem [77].  The seasonality of biomass yields is of concern, because the highest 

yields only occur during certain seasons.  This must be addressed so that near-maximal yields 

can be obtained year-round.   Lastly, the insufficient penetration of light into dense mass 

cultures must be dealt with.  This is because microalgae located near the surface absorb the 

majority of the light energy.  This can result in photoinhibition, which drastically reduces 

photosynthetic capacity.  Conversely, the microalgae that are not located in direct sunlight 

receive very little irradiance, which decreases their ability to assimilate carbon [77].   

 The pathway I believe that researchers will most likely follow to make this overall 

project cost-efficient begins with the utilization of native microalgae.  Mass cultures should 

use species of microalgae native to that area.  Through the use of native species, raceway 

ponds become a viable option, which could greatly limit costs [76].  Insufficient light 

penetration into raceway ponds would still be a major problem.  However, extensive work 

has been performed on truncating chlorophyll antenna size in C. reinhardtii, which shows 

promise towards reducing photoinhibition with a concomitant increase in light penetration 

depth [78].  Mixing with paddlewheels also increases yields [76].   

C. reinhardtii also shows promise for elucidation of molecular controls.  The genome 

has been sequenced and substantial amounts of molecular data already exist for this species, 

so it could serve as an in vitro model [6].  Furthermore, it has been shown that starchless C. 

reinhardtii mutants demonstrate excessive TAG accumulation (10-fold increase) [37,79].  

Therefore, I believe the next step is to determine the effects of different types of stress on this 

particular C. reinhardtii mutant to see if TAG is further accumulated.  In summary, my 

results show that with better understanding of the underlying signaling and metabolic 
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processes, yields can be improved, and the nation will be closer to carbon neutrality and 

energy independence. 
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SCHEMA LEGENDS 
 
 

Schema 1. The schema represents two possible fates of DAG, the enzymes involved, and 
the molecular structures of DAG, TAG, and PC. DGAT and PCT denote the enzymes 
diacylglycerol acyltransferase and phosphocholine transferase, respectively. Representations 
of DAG, PC, and TAG were kindly supplied by Avanti Polar Lipids, Inc. 
 
 
Schema 2.  The schema depicts the hypothesized effect of ethanol stress on the TAG 
production pathway.  Exposure to ethanol will elicit a stress response that results in 
increased DGAT activity, thus increasing TAG production and decreasing PC production. 
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FIGURE LEGENDS 
 
 
Fig. 1 The NBD-TAG standard curve was utilized to determine product formation. A 
range of NBD-TAG amounts were spotted on a TLC plate, developed in 
chloroform/methanol (99:1), and an image obtained using a Typhoon Trio Variable Mode 
Imager. The following settings were used on the imager: Emission Filter – 520 BP 40 CY2, 
ECL+, Blue FAM; PMT – 420; Laser – Blue (488); Sensitivity – Normal. These settings 
were used for all other fluorescent images.  The imager provides quantification in terms of 
volume, which is directly related to the amount of fluorescence. Data represent results from 3 
separate experiments. P-values for the y-intercept and x-variable are 0.0032 and <0.0001, 
respectively. 
 
 
Fig. 2 DGAT activity is linear with protein mass up to 10 μg microsomal protein. 
DGAT activity was assessed using microsomes from Chlorella sp. and NBD-DAG as 
substrate. Total lipids were extracted, separated via TLC, and visualized and quantitated 
using a fluorescence imager (a). Picomoles of NBD-TAG produced were calculated from a 
standard curve and plotted (b). Data represent results from 3 separate experiments. P-values 
for the y-intercept and x-variable are 0.0299 and 0.0159, respectively. 
 
 
Fig. 3 DGAT activity is linear with time up to 20 min. DGAT activity was assayed 
using Chlorella sp. (10 μg microsomal protein) and NBD-DAG substrate. Total lipids 
were extracted, separated via TLC and visualized and quantitated using a fluorescence 
imager. Data represent mean ± standard error results from 2 separate experiments. 
 
 
Fig. 4 Fluorescence based DGAT assay is useful in various algae and mammalian 
hepatic tissue. Reaction contained 10 μg of microsomal protein and proceeded for 20 
min. Total lipids were extracted, separated via TLC and visualized and quantitated on a 
fluorescence imager. Data represent mean ± standard error results from 2 
(liver and Chlorella) or 3 (Chlamydomonas and Cyclotella) separate experiments. 
 
 
Fig. 5 A substrate concentration curve was constructed using 10 µg Rattus liver 
microsomes and 20 min incubation time. Increasing concentrations of NBD-DAG were 
utilized in the reaction mixture to assess acyl-CoA:DGAT enzyme kinetics in mammalian 
tissue. Total lipids were extracted, separated via TLC and visualized and quantitated on a 
fluorescence Imager. Data represent results from 2 separate experiments. 
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Fig. 6 A Lineweaver-Burk (double reciprocal) plot was constructed from the Rattus 
substrate concentration curve. Fig. 5 was used to construct this plot. The y-intercept 
represents 1/Vmax and the x-intercept represents -1/Km. The Vmax and Km were determined to 
be 0.211 pmoles NBD-TAG/min/µg protein and 6.26 µM NBD-DAG, respectively. Data 
represent results from 2 separate experiments. P-values for the y-intercept and x-variable are 
both <0.0001. 
 
 
Fig. 7 Ethanol treatments increase acyl-CoA:DGAT specific activity in Chlorella. 
Chlorella were exposed to various ethanol concentrations and the acyl-CoA:DGAT activity 
assessed. Reaction mixtures received 10 µg microsomal protein and incubated for 20 min. 
Total lipids were extracted, separated via TLC and visualized and quantitated on a 
fluorescence Imager. Data represent mean ± standard error results from 2 separate 
experiments. 
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Figure 2a 
 
 

 
 

Figure 2b 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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